Ewan D. Harney
Institut Universitaire Européen de la MerLaboratoire des Sciences de l’Environnement Marin
Rue Dumont d'Urville, Technopôle Brest-Iroise
Plouzané, 29280
France
Abstracts (first author)
Causes and consequences of developmental plasticity in Daphnia maturation
Summary:
Maturation is a key life history transition, due to the importance of age and size at maturity in determining fitness. Understanding how maturation phenotypes evolve requires an appreciation of the underlying ontogenetic mechanisms, including the maturation threshold, which determines when an individual ‘decides’ to mature. Maturation thresholds are poorly understood, and little is known about how phenotypically plastic or genetically variable they are, but the parthenogenetic crustacean Daphnia is the ideal organism in which to study their evolution. Statistically modelling the maturation process shows that the maturation threshold is a developmentally plastic trait in response to variable resource availability, and more closely resembles a process with a rate than a discrete switch. The idea that the threshold is better thought of as a rate than a switch is further supported by gene expression changes during maturation. The maturation threshold also differs between genotypes and species of Daphnia, and clone-specific maternal effects in the development and growth rate interact to produce phenotypically plastic adult phenotypes. Furthermore, experiments studying the fitness consequences of maturation variation showed that Daphnia magna genotypes initiating maturation at smaller sizes had a higher intrinsic rate of population increase, but this size did not correlate well with competitive success when five clones were directly competed with each other, suggesting that interactions with other factors were influencing fitness. Maturation thresholds in Daphnia do not appear to be based on a single fixed state, but are responsive to environmental variation. The presence of heritable variation and transgenerational effects in these developmentally plastic traits suggests that they have an important role in the evolution of age and size at maturity.