Abstracts (first author)

Poster 

Circadian fluctuation of gene expression along a bathymetrical cline in the marine angiosperm Posidonia oceanica

PDF

Author(s): Dattolo E, D'Esposito D, Lauritano C, Ruocco M, Procaccini G

Summary:

Plants develop mechanisms of adaptations at multiple levels to track and cope with fluctuations in the light environment. At molecular level, the correct matching of circadian variation of gene expression with environmental rhythms allows plants to optimize the utilization of environmental light and to prevent damages due to light excess. Several studies highlighted that a correct matching of endogenous rhythms and external rhythms increases organismal fitness over a board geographic range. Indeed, latitudinal clines in circadian clock gene expression levels (and polymorphism in clock genes) were found in plants, suggesting that natural variation in clock parameters are required to synchronize organisms with their specific environment. Understanding the genetic and physiological mechanisms that plants develop for the seasonal and daily response to environmental conditions, could allow to predict their response to unexpected changes in environmental conditions that could happen in the future due to anthropogenic and climatic changes. Here we explore variations existing, in the daily phase, along a bathymetrical cline in the marine angiosperm Posidonia oceanica (L.) Delile, a key species in costal Mediterranean ecosystems. To do that, we measured modulation of genes expression, by RT-qPCR, at six time points during the day, in several genes related to photosynthesis and circadian rhythms regulation in plants growing at three target depths during the daily cycle along a bathymetrical cline (5 to 30 meter depth). Sampling was performed in a continuous meadow located in the Bay of Calvi, Corsica (thanks to the ESF Cost Action 0906). We analyze the effects of the distinct environmental light conditions on the circadian fluctuation of gene expression. Further, we assess the phenotypic variation among and between genotypes and we discuss its potential adaptive relevance on P. oceanica fitness and survival.



Contacts

Chairman: Octávio S. Paulo
Tel: 00 351 217500614 direct
Tel: 00 351 217500000 ext22359
Fax: 00 351 217500028
email: mail@eseb2013.com

Address

XIV Congress of the European Society for Evolutionary Biology

Organization Team
Department of Animal Biology (DBA)
Faculty of Sciences of the University of Lisbon
P-1749-016 Lisbon
Portugal

Website

Computational Biology & Population Genomics Group 
Close