Abstracts (first author)

Poster 

Characterization of candidate genes from a QTL analysis of the skin microbiota in house mice

Author(s): Belheouane M, Ibrahim S, Baines JF

Summary:

Meriem BELHEOUANE1,2, Saleh IBRAHIM3 and John F. BAINES1,2 1Institute for Experimental Medicine, Christian-Albrechts-University of Kiel, Germany 2Max Planck Institute for Evolutionary Biology, Plön, Germany 3Department of Dermatology, University of Lübeck, Lübeck, Germany

The skin is a complex ecosystem inhabited by diverse microbial communities, and various factors including host genetics, immune status and the environment influence community structure and diversity over space and time. Several skin diseases are postulated to have a microbial component, but little is known about the underlying mechanisms or origins of disease susceptibility. To measure the host genetic contribution to the structure and diversity of the skin microbiota and its potential contribution to disease, we performed quantitative trait locus (QTL) mapping of both autoimmune skin blistering and bacterial traits in an advanced intercross between house mouse strains derived from multiple subspecies. To understand the evolutionary origin of host genetic variability influencing both individual bacterial abundances and susceptibility to disease, we are subjecting candidate regions to more detailed molecular population genetic analysis in natural populations of house mice. In parallel, bacterial species with putative probiotic effects will be cultured and subject to genomic analysis to shed light on the role of host - commensal microbe coevolution in maintaining homeostasis of the skin community.



Contacts

Chairman: Octávio S. Paulo
Tel: 00 351 217500614 direct
Tel: 00 351 217500000 ext22359
Fax: 00 351 217500028
email: mail@eseb2013.com

Address

XIV Congress of the European Society for Evolutionary Biology

Organization Team
Department of Animal Biology (DBA)
Faculty of Sciences of the University of Lisbon
P-1749-016 Lisbon
Portugal

Website

Computational Biology & Population Genomics Group 
Close